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Abstrac t  

Supplementary explanations are given to a theoretical formula- 
tion of X-ray moir6 fringes presented in a previous paper. 
Properties ofmoir6 fringes are clarified on the basis of the exact 
phase calculation of interfering waves. The importance of 
additional phase terms from the Pendellb'sung intensity 
oscillation and a bicrystal gap for interpreting the moir6 pattern 
is discussed. 

1. In troduct ion  

After the early exciting studies of X-ray moir6 fringes (Bonse & 
Hart, 1965; Chikawa, 1965; Lang & Miuscov, 1965; Simon & 
Authier, 1968), there have been some developments in the study 
in the last ten years. The nonprojectiveness of moirt-fringed 
diffraction images has been found by the present author 
Oroshimura, 1987, 1989, 1991a, 1996a) to show that some 
essential details remain unknown regarding the physics ofmoir6 
fi-inges. The phenomenon of pseudo moir6 dislocation, which is 
a dislocation-like fringe discontinuity in the absence of real 
dislocations, has been found (Yoshimura, 1996b). The study of 
interference fringes with SIMOX (separation by implanted 
oxygen) samples has advanced (Jiang, Simura & Rozgonyi, 
1990; Prieur, Ohler & HLrtwig, 1996; Ohler, Pfieur & HLrtwig, 
1996) and it was shown that translation-fault fringes, as they 
were called previouly (Bonse, Hart & Schwuttke, 1969), are 
essentially the same as moir6 fringes (Ohler, HLrtwig & Prieur, 
.1997). 

In theory, the result of a full calculation of moir6 fringes by 
the conventional dynamical diffraction theory has been 
formulated in Yoshimura (1996a), while a satisfactory theory 
of moir6 fringes with X-rays has not been given since the early 
work by Hashimoto, Mannami & Naiki (1961) for electron 
diffraction moir6 fringes. The theory in Yoshimura (1996a), 
however, was too briefly described with the emphasis on the 
explanation of the theoretical projectiveness of moir6 fringes 
and other aspects of the theory were not well explained. It is the 
purpose of this paper to give supplementary explanations for 
the main results of the theory, to advance our understanding of 
moir6 fi'inges. 

2. D i scuss ion  

The supplementary comments are as follows. 
(i) In the theory, the moirt-producing bicrystal is assumed to 

be composed of parallel-sided crystals A and B having a 
reciprocal-lattice-vector difference Ag and a narrow gap 
between them. Firstly, it is clear that the effect of Ag on Xg 
and X-g must be taken into account in addition to its effects on 
the wave vector and on the deviation parameter, since the 
presence of Ag means that a relative displacement u is 
produced correspondingly between the two crystals. Here, Xg 
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and X-g denote the Fourier components of dielecric suscept- 
ibility. Therefore, the susceptibility of the second component 
crystal (crystal B) should be given as follows: 

x'(r) = x(r  - u) 

= ~ Xg exp 2zri[g • (r - u)] 
g 

= ~ Xg exp 2rri{(g • r) + [Ag. (r - ro)]} 
g 

[" "Ag = -grad(g .  u)] 

-- ~.[Xg exp -2rri(Ag • ro) ] exp 2a, i(g' • r) (1) 
g 

[e.g. see Kato's article in Azaroff et al. (1974)]. Here, g 
and g' = g + Ag are reciprocal-lattice vectors in crystals A and 
B, respectively; r o is a position vector denoting a point for 
u = 0, which is normally taken on the entrance surface b of 
crystal B. This origin ro is not a very special point, but never an 
arbitrary point. The Xg factors in crystal B are given by 
X±g exp[q:2rri(Ag, ro) ] instead of X±g. The calculation with 
these Xg factors yields the extra phase term -2zri(Ag. ro) in 
equations (5a) and (5b) in Yoshimura (1996a). The equations 
concerned are rewritten here for the wave fields on the exit 
'surface b' (r = rb,) of Crystal: B: 

/2(rb,) = Ioj(r~) + Igj(rb,) + 2[Ioj(rb,)Igj(re)] 1/2 cos @j(rb,) (2) 

qJj(rb,) = ~ % ( r e )  + 2rr [Ag  • (rb, - ro)] 

-t- KOtogt 2 -- (Untgap/ yg) (3) 

KOtog = --27r{Ag .½[(Ko/Yo) + (~Lg/yg)]} (4) 

u. = x z x o s i n 2 G  (5) 

[j = o(or O), g(or G)]. 

Here,/y(rb, ), Ioj(rt¢ ) and Igy(rt,, ) denote the wave-field intensifies 
in the transmitted (O beam) or diffracted beam (G beam); 0B is 
the Bragg angle, K the wave number ha vacuum and A0 the 
deviation angle from ~e  exact Bragg position at incidence 
on crystal A; K o and Kg are unit vectors along the traveling 
directions of the O and G beams and Yo = (I~o" n) and 
yg = ( I ~ .  n), n being the normal vector to the crystal surfaces; 
t2 is the thickness of crystal B, tgap the gap width; ~0O(rb, ) 
denotes a phase difference made by the extinction action or the 
Pendelltsung intensity oscillation in crystals A and B and is 
related in a complicated way to the intensities Ioj(rb,) and 
G(r~,). 

(ii) The factor I = ½[(l~o/y o) + ((~g/Yg)lt 2 in KOtogt2 geome- 
trically gives a vector joining an incidence point and the 
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midpoint of  the Borrmann fan on the exit surface. With this in 
mind, the phases having the explicit dependence on Ag in (3) 
can be arranged as follows: 

~0M(rb, ) = 2 ~ A g .  (rv -- ro)] + Kctogt2 

= 2Jr[Agll. (ru -- ro)ll ] -- 27r(Agll. 111 ) 

= 2rrAgll. {x + ½[tan(O n + O) - tan(O n - 0)]t}. (6) 

Here, x [= (r u - ro)ll ] and t are a coordinate and a unit vector 
parallel to the crystal surface, respectively, and 0 is the angle 
between the diffracting plane and the surface normal. The 
symbol II denotes the parallel component to the crystal surface. 

As shown, terms having the normal component of  Ag to the 
crystal surface completely cancel in 2rr[Ag. (r e - r o )  ] and 
Kuogt 2. According to the result in (6), the crystal moir6 fringes 
are concerned with only the parallel component of  Ag and are 
given as a two-dimensional scanning on the crystal surface. In 
the coordinate system taking the xy plane parallel to the crystal 
surface, Agll is explicitly given by 

Agll = [ - ( A d / d )  cos 0 - Aw sin 0, Ap, O]/d, (7) 

where d is the lattice spacing, Ad a difference in  d, Aw an 
inclination of  the lattice plane about the axis [K o x Kg] and Ap 
a rotation about the normal to the diffracting plane. It is 
reconfirmed that in the symmetric geometry (0 = 0) the moir~ 
pattern is concerned with only A d / d  and Ap. In the 
asymmetric diffraction, Aw in addition to A d / d  and Ap takes 
part in the formation of  the moir6 pattern; the fringe position 
shift 2Jr(Agll • Ill) is another effect of  the asymmetric diffraction. 
We here are confronted with an ambiguity or a question about 
on which surface b or b' the scanning with Agll is made. In the 
theory, Ag is assumed to be constant in the bicrystal. An answer 
to this question can be found in Lang's (1968) experiment on 
the appearance and disappearance of  moir6 dislocations, which 
shows that crystal B on the inner surface b is compared with 
crystal A. Accordingly, (r v - ro) t l  and ltl in (6) should be 
understood to be paths on the surface b. 

(iii) Generally, experimental X-ray moir6 fringe patterns can 
fully be explained when the contribution from the extinction 
phase ~oo.(r) is taken into account, as in (3). ¢ppj(r) depends not 
only on the crystal thickness but on the off-Bragg deviation 
parameters in crystals A and B and therefore is sensitive to 
strain. The magnitudes of  Igoo.(r)l and Igrad~0pj(r)l are not 
negligible compared to those of  I~om(r)l and Igradgm(r)l. The 
difference between the fringe patterns of  the O and G beams can 
be ascribed solely to that between ~0t,o(r) and ~0m(r ) according 
to (3). Evidence of  the effect of~oo.(r ) is commonly observed in 
plane-wave moir6 topographs with the fringe spacing, say, of  
more than submillimeter order. As shown in the example in Fig. 
1, local moir6 patterns are different for the O and G images 
although the globally viewed fringe direction and spacing are 
practically the same; the local fringe directions are rather 
different between the two images and the fringe positions are 
displaced, typically by half the spacing. As evidenced by such 
disagreement between the O and G images, the observed local 
bendings of  moir6 fringes would not be a direct response to 
varying Ag but are produced by ~ppj(r), which varies locally in 
response to a much more minute strain. It is easily foreseen that 
the occurrence of  pseudo moir6 dislocations [as noted by the 
arrow in Fig. l(a)] also is related to such locally varying ~0pj(r). 

(iv) The gap phase 9~ap = --u, tgap/Yg is not very sensitive to 
the gap width change m the case that ]A0[ < 1" but is very 

sensitive to A0 when tgap > 100 lain. In the case of  Si (220) and 
Mo Kot, for example, the dependence becomes 8~oop/27r = 
[A08tgap + t~apS(AO)]/40, A0 and tgap being given in arcsec and 
pm, respectwely. It should be noted that the operation of  ~og~, is 
not yet experimetally verified when Ag :# 0, although it is 
verified for the case of  Ag = 0 (Yoshimura, 1991b). 

To conclude, properties of  X-ray moir6 fringes have been 
clarified on the basis of  the theoretical calculation according to 
the conventional dynamical diffraction theory. The reality of  

Fig. 1. A pair of plane-wave moir6 topogtaphs of a bicrystal sample. 
(a) O-beam image; (b) G-beam image. Taken by the synchrotron 
experimental set-up described by Yoshimura (1996a); Si 220 
reflection, ~. = 0.72 A. The same field is shown in the two images. 
Dark contrast indicates stronger intensity in this case. The scale 
marks indicate 1 ram. Fringes viewed globally are arranged nearly 
parallel to the diffraction vector g (inclined 0-10 ° more precisely) 
with a spacing 0.43-0.55 ram. The moir6 pattern is mostly due to 
relative rotation (Ap = 3.5-4.5 x 10 -7 tad) between the two crystals 
compared. The arrow in (a) marks a pseudo moir6 dislocation. 
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moir6 fringes should further be verified by experiment. The 
discussion on the effect of  ~Oeo(r ) and ~opo(r ) should be made 
more quantitatively and comprehensively. The effect of  the gap 
width on the fringe visibility in connection with the limited 
coherence length of  X-rays is not treated in the present 
calculation. 
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